Extensions 1→N→G→Q→1 with N=C52 and Q=C2×D4

Direct product G=N×Q with N=C52 and Q=C2×D4
dρLabelID
D4×C5×C10200D4xC5xC10400,202

Semidirect products G=N:Q with N=C52 and Q=C2×D4
extensionφ:Q→Aut NdρLabelID
C52⋊(C2×D4) = C2×D5≀C2φ: C2×D4/C2D4 ⊆ Aut C52204+C5^2:(C2xD4)400,211
C522(C2×D4) = D5×D20φ: C2×D4/C4C22 ⊆ Aut C52404+C5^2:2(C2xD4)400,170
C523(C2×D4) = C20⋊D10φ: C2×D4/C4C22 ⊆ Aut C52404C5^2:3(C2xD4)400,171
C524(C2×D4) = C2×C522D4φ: C2×D4/C22C22 ⊆ Aut C5280C5^2:4(C2xD4)400,176
C525(C2×D4) = C2×C5⋊D20φ: C2×D4/C22C22 ⊆ Aut C5240C5^2:5(C2xD4)400,177
C526(C2×D4) = D5×C5⋊D4φ: C2×D4/C22C22 ⊆ Aut C52404C5^2:6(C2xD4)400,179
C527(C2×D4) = D10⋊D10φ: C2×D4/C22C22 ⊆ Aut C52204+C5^2:7(C2xD4)400,180
C528(C2×D4) = C10×D20φ: C2×D4/C2×C4C2 ⊆ Aut C5280C5^2:8(C2xD4)400,183
C529(C2×D4) = C2×C20⋊D5φ: C2×D4/C2×C4C2 ⊆ Aut C52200C5^2:9(C2xD4)400,193
C5210(C2×D4) = C5×D4×D5φ: C2×D4/D4C2 ⊆ Aut C52404C5^2:10(C2xD4)400,185
C5211(C2×D4) = D4×C5⋊D5φ: C2×D4/D4C2 ⊆ Aut C52100C5^2:11(C2xD4)400,195
C5212(C2×D4) = C10×C5⋊D4φ: C2×D4/C23C2 ⊆ Aut C5240C5^2:12(C2xD4)400,190
C5213(C2×D4) = C2×C527D4φ: C2×D4/C23C2 ⊆ Aut C52200C5^2:13(C2xD4)400,200


׿
×
𝔽